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A B S T R A C T

The paper presents a novel approach for tracking the optimal grid size of the computational domain for modeling
the corona problem within the wire-duct precipitators, which in turn helps in decreasing the experimental
efforts. The Finite Difference Method (FDM) is used to model the corona problem using the full multi-grid
method (FMG) as a powerful convergent iterative solution for Poisson equation particularly on finer computa-
tional domains. The full multi-grid method is examined against successive over relaxation (SOR) strategy and the
latter is effectively transcendent in terms of timing performance. Indeed, using finer grids is a double ended
weapon; on one hand it reduces the truncation error of the Finite Difference Method which reflects in getting
more accurate view for the corona problem in precipitators. While on the other hand, the round off error will be
increased which might give un-accurate results. Accordingly, the issue of choosing the optimal grid size arises.
The full multi-grid method tracked the optimal grid size that gives the appropriate results for the potential and
current density that well matched the previous published experimental measurements.

1. Introduction

The advance in technology is met by an increase in the generation of
electrical power. The gas streams resulted from some industrial power
plants contain particles that would cause air pollution [1–3]. To reduce
the harmful effects from air pollution, the need for a device with high
collecting efficiency is a must. Among these devices, the electrostatic
precipitators have a significant effect in decreasing and controlling the
air pollution results from these power plants [4]. The basic idea of
precipitators is charging the inlet gas stream with ions and these par-
ticles will deposit on the ground plate and then by rapping process,
these particles can be removed. Precipitators are widely used in many
technologies like gold recovery technology [5,6]. This technology
produces sulfuric acid which can be removed by precipitators. In ad-
dition, thermal power plants produce fly ashes which can be controlled
by precipitators [7]. Generally, precipitators are of great importance to
overcome the harmful effects resulting from the increasing technolo-
gies.

The operational performance of the electrostatic precipitators is
greatly affected by its electrical properties. Accordingly, several nu-
merical methods are implemented to evaluate such performance. This
methods includes Finite Difference Method (FDM) [2,8,9], Finite Ele-
ment Method coupled with Finite Difference Method [10], Boundary

Element Method (BEM) coupled with the method of characteristics
[11], Boundary Element Method combined with Finite Difference
Method [12], Finite Element Method (FEM) [13],Charge Simulation
Method (CSM) [14], Finite Element Method combined with the method
of characteristics [15–17],and Finite Volume Method [18,19].These
numerical techniques give a prediction of the performance of pre-
cipitators by calculating the voltage –current (V/I) density curves. They
deal with different design parameters such as the wire radius, the dis-
tance between the two collecting plates, the height of the wire above
the grounded plate in addition to the environmental conditions.

The Finite Difference Method solves both Poisson equation and
continuity equation by finite difference equations to model the corona
problem. These equations are simplified by truncating the higher order
terms that might result in high truncation error, which can be mini-
mized by using finer grids. Among the classical iterative methods used
to solve the finite difference equations are Jacobi method, Gauss-Seidel
method, and successive over-relaxation method (SOR). In order to
reach a certain convergence by these methods, they need order of (N2)
iterations, where N is the linear grid size, which is acceptable on
dealing with coarse grids, but when the grids become finer, these
methods are time consuming [2,20]. Therefore, seeking for an efficient
iterative method is of a great interest.

In order to increase the convergence rate of the classical iterative
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methods, the multi-grid method is introduced [21,22]. The multi-grid
method deals with different grids of various sizes. They smooth the high
frequency error by using any of the classical iterative techniques, and
reducing the low frequency errors by a coarse-grid correction method
[20]. The multi-grid method changes the fine grid into coarser grid
which can be solved by Gauss-Seidel and then by grid transfer opera-
tors, the solution is used as improved initial values for the finer meshes.

The main items of the multi-grid method are smoothers, restriction
and prolongation [20]. The multi-grid method can reduce the high
frequency error by smoothers. One of the grid transfer operators is re-
striction in which the defect in the residuals is mapped from the
smoothed fine mesh to a coarser mesh. There are different restriction
schemes including straight injection, half weighting and full weighting
[2,20]. The other mesh transfer operator is interpolation. It can be
implemented by bilinear interpolation, in which the value of each new
mesh node is computed based on the mean of all existing neighboring
nodes. There are various schemes for implementing the multigrid
method such as the two-grid method, V-cycle, W-cycle and the full
multigrid method [20].

Generally, two basic problems of using finer grids are faced. The
first is the excessive computational time if, the finite difference equa-
tions is solved by any of the classical iterative techniques. The second is
the round off error. The first can be fixed and treated well by using
multi-grid methods [2,20]. The second can be fixed by tracking the
optimal grid. Optimality here means choose a fine grid that grantee
both low truncation error and round off error, which is the main issue of
the present paper.

In this paper, the finite difference method is implemented to choose
the optimal grid size for the computational domain to solve the corona
problem within the wire-duct precipitators in clean air. To follow up the
optimal grids, the finite difference method should deal with finer grids.
So, the full multi-grid method (FMG) is used as an iterative solution for
the finite difference equations. Firstly, the full multi-grid method is
examined against successive over relaxation (SOR) method for different
relaxation factors with respect to the timing performance, and the full
multi-grid method confirms more efficiency. Secondly, the finite dif-
ference method with the help of the full multi-grid method is im-
plemented to choose the optimal grid size for different geometries of
precipitators. By choosing the optimal grid size for a certain pre-
cipitator the researchers can predict the effect of the variation of dif-
ferent design parameters on the performance of the precipitator.
Finally, the effect of changing the applied voltage, the spacing between
wires and the wire height above the ground is discussed.

2. Governing equations and boundary conditions

Two basic equations are used to model the corona problem during
the steady-state conditions. They are Poisson and current continuity
equations [2,9];

∇ = −V
ρ
εo

2
(1)

Where V is the applied potential difference, ρ is the ionic space charge
density, and ɛo is the permittivity of the free space.

Where, the electric field,E, and the corona current density, j, are
given by:

= −∇E V (2)

∇ =j. 0 (3)

=j ρkE (4)

Where, k is the ion mobility in m2/Vs.
Eq.(1), and Eq.(2) are Poisson and current continuity equations

respectively.
Due to the symmetry of the problem, only one quarter of the com-

putational domain is considered. The area under study in the

precipitator is shown in Fig. 1, and the following assumptions are
considered [2,9];

1 At point A, ρ= ρo, and the voltage equals to the applied voltage.
2 Exat points A, B, and along lines BC, CD, and AD, equals zero.
3 Ey equal zero at points A and B, and along line AB
4 Along line CD, the potential equals zero.

3. Solution of continuity equation

Assuming a single and constant "apparent" mobility representing the
motion of all the charge carriers, and substituting in the continuity
Eq. (3) by Eq. (4) using backward finite difference:

+ + − + =− −
a a

ε
ρ a E a E ρ a E ρ a E ρ( ) ( ) ( ) 0x y

o
i j x y y x i j x y i j y x i j,

2
, 1, , 1 (5)

Where Ex, Ey are the electric field intensities along the x and y di-
rections respectively, axe, ay are the incremental spacing along x and y
directions respectively.

By solving Eq. (5), the charge density at any point, ρ (i, j) in the grid
can be computed.

At point A, the charge density, ρo, can be calculated from [2,9]:

=
+

× −ρ
j

π δ

2S
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δ
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(6)

The air density factor, δ, is given by [23]:

=
+

δ
p

t
298

760( 273) (7)

Where f is the surface roughness factor, r is the radius of the ionized
wire (cm), jp is the average current density on the plate, and Sx is the
half spacing between the ionized wires, t is the temperature in Celsius
and p is the pressure in mmHg.

F. W. Peek' s formula [23] has been adopted in Eq. (6), although
accurate estimation of the corona inception field still remains an in-
teresting subject for investigation [24–28].

4. Solution of Poisson equation

Using the assumptions mentioned before, the finite difference
method is used to solve the 2-D corona problem on a rectangular do-
main, Fig. 2. So, Eq. (1) can be formulated using finite difference
method using successive over relaxation method as iterative solver
from:

Fig. 1. Wire-duct precipitator.
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Where, w is a relaxation factor, when w = 1, successive over re-
laxation method (SOR) is reduced to Gauss Seidel iterative method.

As mentioned before, the iterative solution is the main reason for
consuming excessive time in the overall simulation to reach a certain
convergence. Accordingly, Poisson equation takes most of the CPU
time. So, Poisson equation will be solved iteratively using the full
multigrid method.Fig. 2. Partial grid of the intended domain.

Fig. 3. Flowchart of one V-cycle.
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4.1. Full multigrid method

The Full multigrid (FMG) method starts on the coarsest grid and
interpolate the solution to the finer grid where several V-cycles are
done [2]. Fig. 3 demonstrates the flowchart that summarizes one
V–cycle. In the present work, It was found that the number of pre-
smoothing steps, N1, =3 and the number of post-smoothing steps
N2, = 1, give the best time performance in the problem.

4.2. Computational algorithm

A computer program has been performed in the Matlab environ-
ment to solve Poisson and continuity equations. Fig. 4 demonstrates the
flowchart that summarizes the proposed method of solution.

I[ ]h
h
2 : is the standard full weighting operator. I[ ]h

h2 : is the bilinear
interpolation operator.

Fig. 4. Flowchart of the computational algorithm.
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5. Results and discussion

5.1. Full multi-grid method vs successive over relaxation method

The most time consuming part in modeling the corona problem is
Poisson equation, especially on fine grids. In the present study, Poisson
equation is treated by solving the difference equations by successive
over relaxation method (SOR), and the full multigrid method (FMG). A
comparison between the successive over relaxation method, and the full
multigrid method (FMG) is carried out for a Penny and Matick pre-
cipitator's geometry of a wire diameter of 2.032 mm, half the spacing

between the two wires, Sx, equals 7.62 cm, and height of the ionized
wire from ground plate, Sy, equals 11.43cm [29]. The performance of
Full Multigrid Method is tested against the successive over relaxation
method for a grid size (129 × 129).The convergence of the potential
loop is determined such that the percentage error is given by:

= − ×error V V
V

% 100new old

old (16)

The desired tolerance in the present program equals 10−6%.
Applying ten iterations in the voltage loop for a grid (129 × 129),

the percentage potential error for successive over relaxation method for
different relaxation factors (Fig. 5.a), and full multi-grid Method
(Fig. 5.b) is computed. The computation is evaluated using Intel (R)
Core (TM) i7–3612QM CPU @2.10 GHz.

Table 1 shows the number of iterations and the execution time re-
quired by SOR for different relaxation factors and FMG to terminate
from the voltage loop by the desired tolerance. In terms of the speeding
up factor [2], the successive over relaxation method at w = 1.2 and 1.8
decreases the effort by a factor of 1.4 and 7.3 respectively, compared to

Fig. 5. Potential error vs. number of iterations by: (a)Successive over relaxation (b) Full Multi-grid Method.

Table 1
The performance of the two methods.

Grid size (129 × 129) SOR (FMG)
w = 1 (G.S) w = 1.2 w = 1.8

Iterations for voltage loop 148,556 103,427 20,380 18
Execution time for voltage loop (sec) 186 129 24 0.2
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w = 1 (Gauss Seidel), while the full multi-grid method decreases the
effort by a factor 8253. So, the convergence speed is enhanced in case of
full multi-grid method than the successive over relaxation method,
which in turn decreases the computational time, not only for the vol-
tage loop but also for the overall numerical procedure implemented in
the proposed algorithm. So, we can deal with fine grids without taking

the excessive computational time in mind by using the full multi-grid
method.

5.2. Choosing the optimal grid for Penny and Matick geometry

In order to choose the optimal grid size that best describes the

Fig. 6. The potential distribution along the distance: (a) BC (b) AD.

Table 2
Performance of different grid sizes for different applied voltage.

V = 38.7 kV, J exp = 2.26 × 10−4 A/m2 V = 43.5 kV, J exp = 4.84 × 10−4 A/m2 V = 46.2 kV, J exp = 6.88 × 10−4 A/m2

Grid Size J comp (× 10−4) Error (%) J comp (× 10−4) Error (%) J comp (× 10−4) Error (%)
(16 × 16) 5.251 132.3 8.037 66 7.92 15
(32 × 32) 2.5357 12 5.268 8.8 7.27 5.66
(64 × 64) 2.3 1.7 4.843 0.06 6.86 0.29
(128 × 128) 2.127 6 4.469 7.6 6.21 9.7
(256 × 256) 1.87 17 4.143 14.4 5.77 16.1
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corona problem in precipitators, the finite difference method with the
aid of the full multi-grid method as an iterative solver is carried out on
different grid sizes up to (255 × 255) grid points for Penny and
Matick's geometry for precipitator [29]. The effective ion mobility, k,
equals1.6 × 10−4 m2/Vs, the applied voltage is 46.2 kV, and the sur-
face roughness factor is taken as 0.75 [2,9].

Fig. 6 demonstrates the calculated potential values along BC and AD
for different grid sizes and the measured ones by Penny and Matick. The
deviation from the numerical results and the measured ones, for the
potential along BC at x = 0, for a grid sizes of (162, 322, 642,1282,
2562) is 12%,6%,0.4%,4%, and 8% respectively as shown in Fig. 6.a . It
can pointed out that as the grid becomes finer, the deviation from the
experimental results decreases then increases. Firstly, it decreases due
to the reduction of the truncation error in the finite difference equa-
tions, then increases due to the significant round off errors.

So, the grid size of (64 × 64) is the optimal grid for the computa-
tional domain for this geometry and this is confirmed by Fig. 6.b, which
shows the numerical findings of the grid (64 × 64) is the best one that
matches the experimental results along AD.

Table 2 compares the difference between the experimental values,
Jexp, of Penny and Matick for the same geometry and the numerical
results, Jcomp, for different grid sizes with different applied voltage. The
results again confirm that the grid of size (64 × 64) is the optimal grid
for the computational domain.

Choosing the optimal grid can be an advantage in the early design
stage of precipitators, as the designers can figure out and predict the
current density and the electrical field on the ground without the need
to the experimental efforts which in turn lower the costs.

5.3. Prediction of the electric field and current density for different design
parameters of Penny and Matick geometry

5.3.1. Variation of applied voltage
Accordingly the effect of the variation of the applied voltage on the

current density on the grounded plate for Penny and Matick geometry is
illustrated in Fig. 7 using grid (64 × 64). As the applied voltage in-
creases the maximum current density increases as well as the average
current density on the plate. The maximum and the average current

Fig. 7. The current density distribution for different applied voltage.

Fig. 8. The Electric field distribution for different applied voltage.
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density increases by 207% and 198% respectively when the applied
voltage increases from 38.7 kV to 46.2 kV.

Also, the effect of increasing the voltage on the distribution of the
electric field on the ground for the same geometry is shown in Fig. 8. As
the applied voltage increases from 38.7 kV to 46.2 kV, the maximum
electric field increases by 58%.

5.3.2. Variation of the wire to wire spacing
Using the optimal grid (64 × 64) for the above mentioned Penny

and Matick geometry, the effect of changing the wire to wire spacing on
the current density distribution on the ground plate is studied as shown
in Fig. 9 As the wires gets closer to each other, the corona onset voltage
increases resulting in lower current density at the same applied voltage.
The maximum current density increases by 28.5% as the half spacing
between wires, Sx, increases from 7.62 cm to 12.62 cm at 43.5 kV.

In addition, the effect of altering the wire to wire spacing on the

electric field distribution on the ground plate is shown in Fig. 10 at
43.5 kV. It is pointed out that the two electric field distribution for
spacing 7.62 and 12.62 cm cross each other at x = 0.05 m. Before the
cross over point, the electric field intensity is higher for spacing of
12.62 cm, then after it, the electric field for the spacing of 7.62 cm starts
to increase with values higher than that of the spacing 12.62 cm. This
phenomenon may be attributed to that as the two wires get closer to
each other, the overlapping area between two wires increases for a
voltage above the corona onset voltage for both spacing.

5.3.3. Variation of the wire height
For the same geometry, the effect of changing the wire height on the

current density distribution on the ground plate is shown in Fig. 11 at
43.5 kV using grid (64 × 64). As the wires gets closer to the ground, the
corona onset voltage of the wire decreases resulting in higher current
density at the same applied voltage. The maximum current density

Fig. 9. The current density distribution along the ground for different wire spacing.

Fig. 10. The electric field distribution along the ground for different wire spacing.
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increases by 345.5% as the wire height, Sy, decreases from 11.43 cm to
7.43 cm. Also, it is noted that as the height of wire increases, the region
exposed to current density almost the same.

The effect of altering the wire height on the electric field distribu-
tion on the ground plate is assessed in Fig. 12 at 43.5 kV. As the wire
height above the ground increases, the electric field intensity decreases.
The maximum electric field intensity increases by 60% as the wire
height, decreases from 11.43 cm to 7.43 cm.

Generally, changing the spacing between wires and the wire height
affects the current density and electric field distributions above the
grounded plate, but their values is critical as it is constrained to the
overall size of the precipitator.

5.4. Choosing the optimal grid for Tassiker geometry and Felici geometry

To confirm the effectiveness of the full multi-grid method in
choosing the optimal grid size, the finite difference method with the full
multi-grid method is carried out on different grid sizes up to 2552 grid

points for Tassiker geometry for precipitator [30]. Tassicker im-
plemented a microprobe for accurate current density measurement at
the grounded plate. The wire has a diameter of 0.3 mm; the wire to wire
spacing is 10 cm and is hanged at distance 11.5 cm from the ground.
The surface roughness factor, f, equals unity, and the ion mobility, k,
equals 1.8 × 10−4 m2/Vs [30].

For instance, the percentage error from the measured ones, for the
current density at x = 0, for a grid sizes of (162, 322, 642,1282, 2562) is
23.5%,13%,5%,1.4%, and 7% respectively. So, the optimal grid size for
Tassicker geometry is (128 × 128), as shown in Fig. 13.

Also, the proposed method is applied for Felici geometry for various
grid sizes at applied voltage 31 kV. The design parameters are: wire
radius of 0.127 mm, Sx and Sy equal 0.05 m and 0.1 m respectively, the
ion mobility is taken as 1.8 × 10−4 m2/Vs [31]. The computed current
density for a grid sizes (162, 322, 642, 1282, 2562) deviated by
12%,1%,6%,12%, and 16% respectively from the experimental values
at x = 0 as shown in Fig. 14. So, the optimal grid size for Felici geo-
metry is (32 × 32), as shown in Fig. 14.

Fig. 11. The current density distribution along the ground for different wire height.

Fig. 12. The electric field distribution along the ground for different wire height.
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Again, as the grid size gets finer, the numerical findings approaches
the experimental results till they fit each other, then they deviate from
each other. Accordingly, the tracking of the optimal grid grantees lower
truncation error and round off error.

6. Conclusion

Choosing the optimal grid by using the finite difference method
integrated with the full multi-grid on finer grids was presented in the
paper. This would help a lot in getting an accurate picture about the
electrical conditions of the precipitators and can be more confident
about the predictions of the numerical outcomes, without the need of
the costly experiments. The full multi-grid method was compared to the
successive over relaxation method for different relaxation factors and
the full multi-grid method succeeded as it enhances the convergence
rate of the Finite Difference Method, especially on finer grids. Unlike
the other proposed techniques, firstly, the finite difference method with
the aid of the Full Multigrid method is free to work on fine computa-
tional domains without taking in mind the problem of excessive com-
putational time especially on solving Poisson equation in the ionized
field problem. Secondly, the proposed algorithm is able to track the

optimal grid for the computational domain for a certain design of
precipitator, without the need for the costly experiments, so, it can be
an effective tool for the engineers in the design stage. Thirdly, the
proposed technique best fit the experimental results than the other
proposed techniques. The proposed method was implemented on dif-
ferent designs of precipitators, and an optimal grid was reached, which
grantees both low truncation error and round off error. After, reaching
the optimal grid for a certain design, this grid was used to predict the
distribution of the current density and electric field as a result of dif-
ferent design parameters like applied voltage, wire-wire spacing and
the wire height above the grounded plate.
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